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Absiract. An exact quantum decimation is performed on an extended Hub H
a three-site cluster by taking the partial trace of the Belizmann factor over states of the
central site. The resulting temperature-dependent Hamiltonian for the outer two sites of
the cluster contains higher order three- and four-particle interactions, r — J model, pairing
and superexchange interactions, and two-particle interactions which are predominantly
attractive. Possible implications for high-temperature superconductivity are briefly dis-
cussed.

1. Intreduction

Transformations in classical statistical mechanics involving selected summation over
states in the partition function were introduced and studied in the 1940s and 1950s as
a means for obtaining new exact results from known solutions of model systems such
as the Ising model.

Onsager [1] for example, discussed the ‘star-triangle’ transformation in which a
‘star’ consisting of a central Ising spin u,= =1 coupled to three neighbouring spins,
is transformed, by summing the Boltzmann factor in the partition function over the
central spin p,, into a ‘triangle’ consisting of the three outer spins with modified
nearest-neighbour coupling. This transformation relates Ising models on the honey-
comb and triangular lattices and was used, among other things, to evaluate their
respective critical points exactly.

Another purely algebraic transformation introduced by Syozi [2] and known as the
decoration-iteration transformation, replaces a decorated bond consisting of three
spins, by a single bond consisting of the two outer spins, by summing the Boltzmann
factor for the decorated bond over the states of the central spin. This transformation,
illustrated in figure 1, also holds in a magnetic field and was used by numerous people
to obtain a variety of new exact results for two-dimensional lattice models. A compre-
hensive review of results obtained by the above-mentioned methods and their generaliz-
ations has been given by Syozi [3].

In more recent times, selective sumnmation over states in the partition function,
known commonly now as decimation, has been used to generaie approximate renor-
malization group transformations [4] and the star-triangle relation has been superseded
by the so-called Yang-Baxter equations [5] which form the basis of exact solubility
or integrability of two-dimensional lattice models in statistical mechanics and lattice

gauge theory [6].
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Figure 1. The decoration-iteration transformation.
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Figure 2. A Cu-0O, plane with open circles corresponding to Cu and full circles correspond-
ing to O;.

Interest in the decoration-iteration or decimation transformation has recently been
revived with the discovery of the high-T. superconductors which have Cu-0, planes,
shown in figure 2, as a common feature. Many models and pairing mechanisms have
been proposed for the Cu-0, planes including the extended Hubbard model with
on-site and nearest-neighbour repulsion between fermionic holes on the Cu and O,
sites [7]. In formulating a statistical mechanical treatment of such models it is natural
to consider a quantum mechanical analogue of decimation involving a partial trace
over O, sites in say an extended Hubbard model of a Cu-O, plane,

Unlike classical decimation however, in which one can factorize individual
Bolizmann factors for decorated bonds and rigorously perform the partial sum over
states of the central or decorated site, the non-commutability of terms in the extended
Hubbard model Hamiltonian corresponding to decorated bonds, makes rigorous deci-
mation in the quantum case a virtually impossible task. One can, nevertheless, as a
first approximation, consider quantum decimation of Boltzmann factors corresponding
to simple fermion clusters, as a means for gaining some understanding of the nature
of the effective couplings that can be mediated in such clusters. We have in fact
performed such a calculation rigorously for the elementary cluster, shown in figure 1,
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consisting of spinless fermions on three sites with on-site and nearest-neighbour
repulsion [8]. In this case we found by the decimation process that the effective coupling
between the outer sites was attractive for a wide range of temperatures and densities
and on this basis suggested oxygen-mediated attraction between holes on Cu-sites as
a possible pairing mechanism for high- T, superconductivity.

In reality of course, the holes in extended Hubbard models of Cu-0O, planes are
not spinless and in fact it is commonly believed that ‘spin’ also plays an essential role
in high-T,.

Our purpose here is to report on a quantum cluster decimation (gcp) calculation
for the elementary cluster of fermions with spin on three sites with on-site and
nearest-neighbour interactions.

In the spinless case there are two states pet site (unoccupied or occupied by a

particle) so in the number representation we have to manipulate 2* = 8-dimensional
matrices 'Il'l the decimation nrocess. With the inelucion of enin hnwevar thare are four
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states per site (unoccupied, occupied by a spin-up or a spin-down particle, and occupied
by a spin-up and a spin-down particle) so the decimation process now involves
manipulation of 4* = 64-dimensional matrices. We were, nevertheless, able to perform
the decimation process exactly in this case and found that the original on-site and
nearest-neighbour interactions gave rise to complicated temperature and density depen-
dent three- and four-particle interactions as well as effective spin-dependent pair
interactions of the superexchange form, and renormalized single and pair hopping
terms. In other words, all of the effective couplings obtained by the more conventional
perturbative [9] and canonical transformation [10] methods can also be obtained by
our ¢cp method with the added feature that our effective couplings are dependent on
the temperature and the density.

The earlier perturbative methods [9] can be criticized on the grounds that they are
based on perturbations from the ground state and therefore may only be relevant at
very low temperatures. Similarly, the canonical transformation method {10] is simply
an exponential unitary transformation on the Hamiltonian in which all but the lowest-
order terms are discarded in a somewhat ad hoc fashion. Both the perturbative and
canonical transformation methods do not involve the temperature in any essential way
so their relevance to statistical mechanical calculations is not at all clear.

Our gcp method is strongly based in statistical mechanics and involves the tem-
perature and density in an essential way. The obvious drawback of the method, however,
is that it ignores the non-commutability problem mentioned previously and can only
be feasibly carried out on smail elementary clusters. Nevertheless, we see our calcula-
tions to date as a first step in a systematic development of an alternative approach in
quantum statistical mechanics involving a selective summation or ‘tracing-out’ of states
in the partition function. It is clear, however, that we need to incorporate ideas of
self-consistency and renormalization into our method before it can become a viable
and practical tool. Work along these lines is currently in progress.

In outline this paper is arranged as follows. In section 2, we present the classical
decimation transformation for a lattice gas cluster of three sites and review some of
our previous results, In section 3, we derive a 64 x 64 representation of the three-site
cluster Hamiltonian and the associated Boltzmann factor for fermions with spin and
perform a partial trace over states of the central site. In section 4, we derive and discuss
the form of the effective cluster Hamiltonion for the two outer sites of the original
cluster. Technical details are relegated to appendices and our results are discussed in
section 5.
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2. Classical lattice gas decimation

In order to get some idea of what is involved in the decimation process, we first
consider the simplest case of classical decimation of a three-site lattice gas cluster with
Hamiltonian

Hy=Jdn{n,+n,y) {2.1)

where n =0, 1 is the occupation number of the central site of the cluster and n; =0, 1
for i=1,2 are the occupation numbers of the outer two sites of the cluster.

The contribution to the grand canonical partition function obtained from the cluster
by summing over the states of the central site is given by

T exp[-BIn(n+n)] exp(Bun)=1+z expl—BJ (n,+ ny)] (2.2)
n=0,1

where u is the chemical potential and z = exp{Bx) is the activity.

We now define the effective cluster Hamiltonian 7% and effective chemical potential
g by

1+z exp[—BJ (n+ m;}] = C exp(—BH") exp[ Bi(n, +n2)] (2.3)
and make the ansatz
X5 = Jn,n,. (2.4)

Since n; =0, 1 for i = 1, 2 we see that (2.3) with %< given by (2.4} is satisfied identically
provided

C=1+z (2.5)

exp(Bi) ={1+zx)(1+2)7" (2.6)
and

exp(—BN)=1+z(1-x)’(1+zx)7° (2.7)
where

x=exp(—8J) (2.8)

The important point to notice from (2.7) is that J <0, i.e. the effective coupling is
always attractive regardless of the sign of the original coupling J.

For the classical lattice gas, where Boltzmann factors for clusters commute, we
deduce from the above simple decimation calculation that the grand canonical partition
function for the decorated square lattice gas with N bonds for example (i.e. the classical
Cu-0, plane shown in figure 2) is in fact equal to (1+2z)}" times the grand canonical
partition function for the usual square lattice gas but with effective nearest-neighbour
(attractive) coupling J and effective chemical potential u + 4.

The above results are, of course, well known but are usually expressed in Ising
spin language.

In a previous article [8], we generalized the above cluster Hamiltonian (2.1) to
include particles with spin so that in place of (2.1} we considered the three-site cluster
Hamiltonian

Wcl=J'(rlT+nl)(n,1+n27+nll+n21)+ Uonfnl (29)

where n,, o =1,|, denotes the occupation number of the central cluster site by a
particle with spin o, and n,,, =1, ] and i =1, 2, denotes the occupation numbers of
the outer sites of the cluster by particles with spin o.
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It will be noted that (2.9) is in fact the Hamiltonian for an extended Hubbard
model of a three-site cluster with zero hopping integral r, on-site repulsion U, and
nearest-netghbour interaction J. Qur task in the following sections will be to perform
the decimation with hopping included in (2.9).

In the classical case (2.9) decimation proceeds as before by summing the Boltzmann
factor for the cluster states n, =0, 1, ¢ =1, | of the central site and seeking an effective
chemical potential & and cluster Hamiltonian < for the outer sites, such that

L exp(—B¥Ha) exp[Bulny+ny)]

{n,=0,1}

=Cexp(—ﬁ3?f§f‘)exp{ﬁﬂ [Z (n.(,+nzu)]}. (2.10)

In this case a simple pair interaction ansatz such as (2.4) for %' is inadequate
and in order for (2.10) to be satisfied identically for all possible states of the outer
sites we must postulate effective three- and four-particle interactions in addition to an
effective two particle interaction. We refer the interested reader to our previous articie
[8] for details and merely note here that again the effective pair interaction is always
attractive regardless of the sign of the original coupling J. The weaker three- and
four-particle interactions on the other hand show mixtures of attraction and repulsion
in the temperature-density plane.

3. The 64 x 64 representation of the quantum cluster Hamiltonian and the partial trace
decimation

We consider the three-site cluster Hamiltonian

Ha=—t T [aa,+ay)+(a),+az,)a,
a1l

+ Upnpn,+J(np+ 0} (0 +ny + 0y +ny)) (3.1)

where a,(a;,) is the usual fermi destruction (creation) operator for a particle with
spin @ on the outer sites i=1,2, a,(a)) the corresponding operators for the central
site of the cluster and n,, = a a,,, n, = a,a, the respective number operators for the
three sites.

Our problem is to take the partial trace over states {a.,., a,} corresponding to the
central site such that

Ttya, .ot yiexp(~B.) expl Bu(n, + n))1}
= C exp(—B#5') exp[B(n + ny+ 0y + 0y )] (3.2)
and to find appropriate expressions for the effective cluster Hamiltonian %3 and

effective chemical potential gi.
At this stage it is convenient to introduce the canonical transformation

1
T =5 {a\, +a2,)
(3.3

1
[£ :\/_'2‘ (a]rr - a2rr)
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and to express (3.1} in the form
Ha=~tv2Y (ala,,+al a,)+ Upniny +J 3 (ny+n}n.,+n_,) (3.4)

where
n:.tlr = aiua:tu' (3.5)
are modified number operators.
We now adopt the number representation for (3.4} in which aii operators are
represented by 64 %64 matrices with row and column indices specified by the set of

states or ‘numbers’ {n;, n,, nyy, nyy, n_y, n_ ) In this way %, can be expressed in the
following hierarchical block form

(mny) (1) (10) (01) (00)
(11) Hll Hl2 Hl} H|4
(10) H21 H22 H23 H24
Hoy= 3.6
S0 \ Hy Hy Hsy Ha (3.6a)

(00) H4l H42 H43 H44

where the Hj; are 16 x 16 matrices and also have the block form

(nogna) (1) (10) (01) (00)
(11) hiv ki his ki
g, =10 [ hh hh kR (3.65)
(01) hiy  hi: k3 ki,
(00) h3, i & hi,

with the h}, 4x4 matrices of the same form with rows and columns arranged in the
order (11) (10) (01) (00) corresponding to (n_;n_)).
We note that the interaction part of 3,:

Uptyn +J Y (my+n )(n,,+n_,) {(3.7a)

is diagonal in this representation whereas the kinetic energy part of %,:

-tv2¥ (a a4, +al,a,) (3.7h)

is diagonal with respect to the subspace specified by (n_;n_,) but non-diagonal with
respect to the subspace specified by (n;n,n.1n,)).

Using (3.7a), we easily see that the non-zero diagonal blocks of %, are given in
terms of

[U,+8J 0 0 0
0 U, +6J 0 0
Rln = o =P 3.8
L 0 0 Up+6J 0 ’ (3.8a)
0 0 0 Up+4J
(U, +6J 0 0 0
0 U,+4J 0 0
RO = Ui v =D 3.8
= 0 0 U,+4J 0 : (3.86)

¢ 0 0 Uy +2J
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Uy +4J 0 0 0
ht = 3 Uo;u U03-2J g =D (359
0 0 0 U,
a5 0 0 90
h‘ff’=hﬁ3'=(9 Moo LD; (3.8d)
\U v o3 U/
O 0 o0 27
3 0 0 0
WD = 2D = pY = Y = g 2OJ 201 g =D, (3.8¢)
0 0 0 J
and
27 0 0 0
AR = B (()] g 3 3 =D, (3.8/)
0 6 0 o/

while the remaining diagonal blocks are equal to the 4 x 4 null matrix O,, ie.,
hGY =0, k1=1,2,3,4. {3.8g)

The non-diagonal part of %, (3.7h), has non-zero matrix elements — tv?3 2 connecting
states and in blocks given by

(01 11 pg) - (1101 pq) Ry
ala J(Ol 10 pg)~ (1100 pg) hizg)
“11(00 11 pg)~ (1001 pq) hi3
(00 10 pg) ~ (1000 pg) hi
((10 11 pg) ~ (11 10 pg) h3v
aja,, (10 01 pg)— (1100 pg) hi3"
“*1(00 11 pg) - (01 10 pg) Ry
L(00 01 pg) ~ (01 00 pg) vl

(11 01 pg) - (01 11 pg) P (3.8k)
ala, (11 00 pg) - (01 10 pg) h:i:

(1001 pg)~> (00 11 pg) h$

\(10 00 pq) ~ (00 10 pq) h""
((11 10 pg) - (10 11 pq) Ry
+ | (1100 pg)—> (1001 pg) hig
@+ (0110 pg) > (00 11 pg) R
(01 00 pg}— (00 01 pq) hE

and all other matrix elements are zero.
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It then follows that 3, can be expressed as a 64 X 64 matrix composed of several
diagonal 4 x 4 submatrices with the following structure

(D, 0 0 0 0 O 0 0 0 0 0 0O
0o b, 00 T 0 0 0 0 0 0 0 }
0 0 D, 0 0 0 0 0 T 0 0 0 Ore
0 0 0 D, 0 0 T 0 0 T 0 0
0 T 0 0 D, 0 0 0O 0 0 0 0
0 0 0 0 0 D, 0 O 0 0 0 0
0 0 0 T 0 0 D, 0O Oe T 0 0 0
%= 0 0 0 0 0 0 0 D 0 T 0 0 (3.9)
¢ 0 ¢ T 0 D, 6 0 0 0 0 0 0 )
0 0 0 T o 0O D, 0O 0T 0 0 0
0 0 0 0 e ¢ 0 D, 0 0 0 0 O
0 0 0 0 0 0 0 D, 0 0 T 0
0O 0 T 0O 0 T 0 0O
oy 6 0 0 T 0 0 0 0 0.
0 0 0 0 0 0 0 T
\ 0 0 0 0 0 0 0 0 )
where
[-v2 o 0 0
T 0 -2 0 0
0 0 -2 0
0 0 0 -2

and O, denotes the nx r null matrix.
We are now in a position to construct the matrix

exp(~pB%¥.) exp[Buln; +n)].

In view of the special form of &, given in (3.9), we only need to construct the
following three types of exponential functions of the matrices:

D, T (K“’ Klz)
- =K= 3.10)
“"[ B(T D)] K, K@ (
D, T (L”’ le)
_ =L = i
e"p[ ﬂ(:r 03)] L, L? (3.11)
and
p, T T O, MY M, My, M,
T D, O, T M, MY M, My,

— =M= (312)
e\ Bl r o, b, T My My MY M,

o, T T O, M., My My M@



Given K, L and M, we have

Quantum

cluster decimation

K]Z

0
0
0
0
Ly,
0

M,

L

0

0

(e 7

0

K(l)

Kll)

M32

M3

0

My

My

L

L,

exp( _B%cl) =

(3.13)

4607
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The 16 x 16 reduced matrix
Z =Tr,, o \[exp(~BH.,) exp{Buln,+n )} (3.14)

obtained by taking the partial trace over {a., a|} states is now easily obtained from
(3.13) by adding the 16 x 16 diagonal block matrices enclosed in solid lines, multiplied
by their appropriate, respective, powers of the fugacity

z=e, (3.15)
Thus from (3.13) and (3.14), we have
22 e FPoy 2K P+ MW 0
7 0 22K(”+Z{E_BD“+ M(Z)}+ L
0 0
0 0
0 0
0 0
2KV 4 z{e PPt M)+ LD 0 (3.16)
0 MY +27L +1

The probiem now is to represent Z in the form (3.2) and to find appropriate
expressions for the effective Hamiltonian % and effective chemical potential .

4. The effective cluster Hamiltonian

In the number representation (3.13) of exp{—B8&,), the partial trace (3.14) over
{a,, a_}-states results in the diagonal 16X 16 matrix Z given by (3.16). It is readily
confirmed, however, that of the sixteen diagonal elements of Z only nine are indepen-
dent. In order to represent Z in the form (3.2} therefore, we need an effective
Hamiltonian 7% with seven independent parameters, which together with C and &
give the required nine unknowns.

Motivated by our previous classical treatment, we include three-particle and four-
particle interactions, as well as pair interactions and an effective hopping term, in <"
This gives a total of six obvious parameters. The required additional parameters, J; ,
and J3 in place of J;, in (4.1), which distinguish n., and n_, states, are included in
the expectation that superexchange-type interactions should play an important role
when quantum effects, arising from fermions with spin, are taken into account.

We are thus led to the ansatz

HT=—-7Y (a}, a2, +a3,a1,) + Dyt Wyt I 0nen, 40 g,
o

+"’Tn,An..fn_,-»{;-n_‘\+ I-n .n (n .+n. Y+JIn .n..n_.n_ . (41)

RS LEENERLEN | PR By TR T A R T P
In view of the fact that

Y (@}, a0+ as,a.,)= Bogtn,—n_,—n (4.2)
the effective Hamiltonian (4.1) is diagonal in the number representation in which Z
is diagonal. We are thus led, by direct computation, to the results given in table 1.
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Table 1. The nine independent diagonal elements of Z and corresponding expressions for

C exp(—B.?t’zlﬂ) exP[ﬁﬁ("m +hy g +ay )]

Popfy fopn_y Z{nnyn_yn_} C EXP[B.J Ting+ nZa)] exp[—B36 ]

1111 2P e PVt Loz KTy MY CexpldBa— 84S, +IT+J;+2J5+ 27+ 1)}
1110 22 PS40 K 4 MY Cexp[3Bi— B(—i+20L+JT+J7)]

1100 e AWt L a2k (B A Cexp[2Bd ~B(—2i+J1)]

1011 PEV+z{e MO+ LY Cexpl3Bia-B(7+2J,+207 +J3)]

1010 PR z{eTM e MEN LT Cexp{2Bi- B)

1000 PR+ MO LT CexplBi-pi

0011 2Z2MV+ 2200+ 1 Cexp[28i— B(2{+J7)]

0010 M+ 22180+ 1 C exp[B4 - Bf]

0000 MY+ 2L+ C

Successive elimination of variables starting with C in table 1 gives the explicit
expressions in table 2 for the parameters in (4.1), in terms of the diagonal components
of the matrices K, L and M defined in (3.10)-(3.13), which in turn depend on the
original parameters in %, (2.1).

Explicit expressions for the diagonal elements of K and L are derived in appendix
A and listed in table 3. Similar expressions are derived for the diagonal elements of
M in appendix B for the special case U,=2J In the extreme case of infinite on-site

Table 2. Explicit expressions for the nine parameters in terms of the components of Z
given in table 1.

C = Z{0000)
L [Z(0010)Z(1000))/?
exp{fi)="—" Z{0000)
~ Tzaoon1?
e"p(‘m)=[2'(0010):'
L. Z(1100)Z(0000)
CXP(_'GJ"FW[Z(WOU)]Z
Z(0011) Z(0000)
[Z(aoto ]
Z(1010}.Z{0000)
exp(=BL)=Z o1y z(1000)
Z(11100Z{0010)[Z{1000)]?
Z{0000}Z{(1100)[ Z(1010)]
ZO011) Z(1000)[ Z(0010)]
Z{D000) Z {001 D[ ZO101 P

Z(1 l1l)Z(llOO)Z(OOll)[Z(IOlO)]‘Z(OOOO)
[Z(1000}Z(0010)Z(1110) Z{101 )]

exp(-BJ.)=

exp(-BJi)=

exp(—8Jy)=

exp(—BJ,}=
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Table 3. Parameter values determining the diagonal elements of K and L from (A4).

Element —a/p —-b/g
KLY R Up+6J 41
K (1) , K 2)

e Uytas ez
K.\J * KJJ
K KD Up+24 2J
iy, Ly 2 0
Ly, L ; o
LY, LY
LYY, L&Y 0 0

repulsion (U, -»o0), the problem, as shown in appendix C, simplifies and we are again
able to obtain explicit expressions for the effective coupling parameters. In all other
cases, however, we must resort to numerical methods.

Numerical results for the effective coupling parameters J, and J, are shown in
figures 3 and 4 for combinations of U,=2J, Uy=c0, t/|J|=1.0 and ¢/|J{=10.0 and as
functions of the variables x =e ™ and z = e”*. Results for intermediate values of U,
show similar behaviour.

We note that J, is very similar in form to the spinless analogue derived previously
and that for attractive J(x> 1), J, becomes repulsive for large ¢/|/|. Otherwise J, is
predominantly attractive and essentially independent of u for the physically interesting
region p>0(z>1) and J>0(0<x<1).

The eflective exchange couplings J; are comparable with J;=J_ for small to
moderate U, especially in the region of interest (0 <x <1, z>1). For very large U,
and t/|J], however, J! » J; for small x. Similarly, as seen in figure 4, 3(J: +J7)—J,
is small for most parameter values except for large U, and t/|J| and small x.

(e}

i LTSS 5%
SR 2 S
S e et e,

=
R L s et gt
D o o S GG D e,
g o e oty M T 2 o ity "™
e L
o "4-:"'/4:""‘

Figure 3. J, as a function of x=¢ * and z=¢® for (a) Uy=2J, t=|J]; (b) Uy=2J,
t=10[1]; {e) Uy=c0, t=|J|; and (d) Uy=00, 1=10/J],
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Perturbation calculations given in appendix D confirm the above results and show
that quantum hopping and spin effects in our Qcp procedure gives rise to the usual
superexchange interactions.

Further discussion of the superexchange terms and the relation between our #5
Hamiltonian and that of the so-called 1—J model is given in the following section.

5. Discussion

In this paper we have applied our quantum cluster decimation (ocp) method to a
three-site extended Hubbard model for fermions with spin which includes hopping,
on-site and nearest-neighbour interactions.

By taking a partial trace over state of the central site of the cluster, we derived an
effective cluster Hamiltonian for the two outer sites which includes effective temperature
and density dependent hopping integral, chemical potential, pair-, three- and four-
particle interactions.

Of particular interest are the effective superexchange terms in (4.1):

Jinpng +Ionon  =3(JT+ID (NN + QrQD +3(J2 - J)(N.Q,+ N Qy) (5.1)
where in terms of the original number operators n;,,

N,=n,+n,, (5.2)
and

Q, = ai 2, t az,a,,. (5.3)

The second term in {5.1) involving products of N, and Q, operators can be
interpreted as a renormalized effective hopping term while the first term in (5.1) can
be transformed into the familiar superexchange form by defining the usual spin
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operators

STHIS] = ahay

ST -isSy=ajja, i=1,2 (5.4)
87 =3nmy—my)
and noting, after some elementary manipulation, that
NiN 4+ QQ = (d]+dD(d, + dy)+3n,n,—2(S,+ 8)) (5.5)
where
4= anan i=1,2. (5.6)
=Mty

The first term in (5.5) represents a “pair density’ operator and the remaining terms
form the familiar combination that appears in the r-J model [11] which has traditionally
been derived by perturbation or canonical transformation methods.
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Appendix A. Diagonal elements of the matrices K (3.10) and L (3.11)

In order to find the elements of the exponential of a symmetric 2x2 matrix

a ¢
Az(c b) ) (AD

we diagonalize A by the orthogonal matrix S of eigenvectors of A and write

_ o e _ gt EXp A, 0 )S A2
exp{A)y=exp(S 'DS}=5" exp(D)§5=S§ ( 0 exp A, (A2)
where
D=("' 0) (A3)
0 A

and A, A, are the eigenvalues of A
An elementary calculation then shows, in particular, that the diagonal elements of
exp(A) are given by

2 —b : | 2
exp([a+b]/2){cosh(—\/§ (a—b)2+4c')i——(f\/._b.)——%-—_zc—zsmh(zd(a—b) +4c2)}. (Ad)
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The diagonal elements of the block matrices K and L defined by (3.10) and (3.11)
are then easily obtained from (A4) by setting 2 and b equal to the quantities specified
in table 3, and ¢ equal to V28t

Appendix B. Diagonal elements of the matrix M (3.12)

in order io find the diagonal elements of the matrix M defined by (3.12), we need to
diagonalize a matrix of the form

a ¢ ¢ 0
c b 0 ¢
A=
¢c 0 b ¢ (B1)
\0 ¢ iy 9/

The required results then follow from straightforward generalizations of (A2) and (A4).
For the special case a = 2b, corresponding from (3.12), (3.8¢) and (3.8¢) to U, =27,
the eigenvalues of A are given by

b b and d = bV b +4¢? (B2)
and the diagonal elements of
M =exp(—BA) (B3)

are found by the method outlined in appendix A to be

2 2 b2+2 2 b
M = g=h [_i+( < ) cosh Bd —~ sinh Bd-l
\ 7 w J

L g2 4?
MP = gD e b7\ | 2c
= =e™® 3| 1+ 5) + 7 cosh pd (B4}
2¢° [d*+b? b }
() _ a=hBb —_——] —— h Bd +—si .
M e l:dz ( d )cos B dsthd

In (3.12), the M'" are block matrices with diagonal elements, from (3.8¢) and
(3.8e) given by (B4) with b=3J for M\, b=2J for M) =M.} and b=J for MY}
with i respectively 1, 2 and 4 in (B4} and ¢ =-v2t.

For U, # 2J, one must resort to numerical methods to evaluate the required matrix
etements in (3.12}. The limit L;— <, however, affords another special case which can,
as shown in appendix C, be treated analytically.

Appendix C. The strong-coupling limit U, o

In the strong-coupling limit (U,— 0}, double occupancy of the central site of the
cluster by particles of either spin is prohibited. This means that in the number
representation, all of the elements of ,, associated with the (11) component of (n.n}},
corresponding to the first 16 rows and columns of (3.9), can be discarded, leaving the
lower 48 X 48 matrix representation for #.

The matrix K defined in (3.10) is now irrelevant, L defined in (3.11) remains
relevant and (3.12) is replaced by the evaluation of the exponential matrix M defined
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by
D, O, T MY M, M,
CXp "'B 04 D4 T EM—_" Mz[ M‘u“) sz . (Cl)
T T o, My, M, MY

Similar reductions occur in (3.13) and (3.16) with the nine independent diagonal
elements of Z in table 1 replaced by

Z(1111) =2z e 4 M3

Z(1110) =2z e ¥ 4 M3

Z(1100) =2z e~ + M)

Z{1011) = z(e > & N 1)+ L2

Z(1010) = z(e 2# + M)+ LY (C2)
Z(1000) = z(e 'ﬂ’+1\7ﬁ,4)+Lf&’

Z(0011) =2zL{)+

Z(0010)=2zL5) +

Z(0000) = 2zLiY +

In order to evaluate the diagonal elements of M, we first note that the eigenvalues
of the matrix

b 0 ¢
A=[0 b ¢ (C3)
¢c ¢ 0
are given by
b, i{(b+£vVb +8cY)=1(bxd). (C4)

Repeating the arguments in appendices A and B then shows that the diagonal
elements of

M =exp(—BA) (C5)

are given by

1\71‘”=M‘2’—‘1“{ —Bb L o ﬂb“[cosh(,ﬁd/Z)—-smh(Bd/Z)]}
2

(Cs6)
N3 = 8812 [ccsh(pd/2)+'3Siﬂh(ﬁdfz)]-

In (C1) the M are again block diagonal matrices with elements from {3.8¢e) given
by (C6) with b =3J for M\, b= 2J for M) = M4 and b= J for MY} with i respectively
1 and 3 and ¢= —v2t.
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Appendix D. Perturbation expansions for K, L and M for small ¢

Using the well known formula

expl-B{(H+ #1)]

= exp(—B3:) [l - Jﬂ ¥, (s) cls+J‘.El J‘s (s} (s)ds' ds.. ] (D1}

4] ] 0
where

F,(s) = exp(sH,) %, exp(—s¥,) (D2)

the matrix K defined by (3.10) can be written as

e A 0 T2
(% ) mmr
x(6—503_6—30.{1+g(1)1_03)} Q )
0 e PO—e {1+ (D;~ D)}
o (D3)

from which one easily obtains

2
(U, 2—:21"')2 {e ™ —e P US4 B(Up+20) T} +. .. (D4)

KD = e ~AUat6))

with similar expressions for the remaining diagonal elements.
Similarly from (3.11) and (3.12), and (D1), we have

2
L =801 - e (14 D)+
5

T2
L= I+Ez-[e“‘3”5—(1 -BDs)1+...
5

2T

(D,-D,? [e™#Pa—e P14+ B(D:— D)} +. .. (DS)

M= PPt

2

T
M= e P s e~ P {1 - 8Dy~ D))
2 4

T!

+
D;

{1—e #%(1+ 8D} +...= M7

(4) 2T2 -pD
M =I+B—;[e 1+~ {1-8DJ]+...
4

from which perturbation expansions for the diagonal elements of L and M easily
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follow. For example,

267
L= *23J+—(2”2[1—e’2’”{1+2,31}]+...
M[l)=eé,ﬂ(un+4.f)+~L[ “38S _ o mBUgtaIy g 4 g(L 4 J)} ]+
n (U0+J)2 € € {1+8(U, 1+...
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