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a three-site cluster by taking the panial trace of the Boltrmann factor over states of the 
central site. The resulting temperature-dependent Hamiltonian far the outer two Sites of 
the cluster contains higher order three- and four-panicle interactions, I - J model, pairing 
and superexchange interactions, and two-particle interactions which are predominantly 
attractive. Possible implications for high-temperature superconductivity are brieRy dis- 
cussed. 

1. Introduction 

Transformations in classical statistical mechanics involving selected summation over 
states in the partition function were introduced and studied in the 1940s and 1950s as 
a means for obtaining new exact results from known solutions of model systems such 
as the king model. 

Onsager [ l ]  for example, discussed the 'star-triangle' transformation in which a 
'star' consisting of a central Ising spin p0= + I  coupled to three neighbouring spins, 
is transformed, by summing the Boltzmann factor in the partition function over the 
central spin fro, into a 'triangle' consisting of the three outer spins with modified 
nearest-neighbour coupling. This transformation relates king models on the honey- 
comb and triangular lattices and was used, among other things, to evaluate their 
respective critical points exactly. 

Another purely algebraic transformation introduced by Syozi [2] and known as the 
decoration-iteration transformation, replaces a decorated bond consisting of three 
spins, by a single bond consisting of the two outer spins, by summing the Boltzmann 
factor ior the decorated bond over the states of the centrai spin. This transformation, 
illustrated in figure 1, also holds in a magnetic field and was used by numerous people 
to obtain a variety of new exact results for two-dimensional lattice models. A compre- 
hensive review of results obtained by the above-mentioned methods and their generaliz- 
ations has been given by Syozi [3]. 

In more recent times, selective summation over states in the partition function, 

malization group transformations [4] and the star-triangle relation has been superseded 
by the so-called Yang-Baxter equations [ 5 ]  which form the basis of exact solubility 
o r  integrability of two-dimensional lattice models in statistical mechanics and lattice 
gauge theory [6]. 

known commoniy now as decimaiioii, has been use: to appioximaie renor- 

4.599 ","e ,"?",". ,.nrino , .non, In m .nnr ,nr, ,,..l.,:rh:-- 1 .A 
","_).*..I" ,,,,, 7.*I?I,T'"~"_I.," '& , 7 1 1  I". . ""..1.."16 L L Y  



4600 T Marsubara er al 

Figure 1. The decoration-iteration transformation. 

Figure 2. ACu-0, plane with open circles corresponding IO Cu and ful l  circles correspond- 
ing IO 0,. 

Interest in the decoration-iteration or decimation transformation has recently been 
revived with the discovery of the high-T, superconductors which have Cu-0, planes, 
shown in figure 2, as a common feature. Many models and pairing mechanisms have 
been proposed for the 0 - 0 ,  planes including the extended Hubhard model with 
on-site and nearest-neighbour repulsion between fermionic holes on the Cu and 0, 
sites [7]. In formulating a statistical mechanical treatment of such models it is natural 
to consider a quantum mechanical analogue of decimation involving a partial trace 
over 0, sites in say an extended Hubbard model of a Cu-0, plane. 

Unlike classical decimation however, in which one can factorize individual 
Boltzmann factors for decorated bonds and rigorously perform the partial sum over 
states of the central or decorated site, the non-commutability of terms in the extended 
Hubbard model Hamiltonian corresponding to decorated bonds, makes rigorous deci- 
mation in the quantum case a virtually impossible task. One can, nevertheless, as a 
first approximation, consider quantum decimation of Boltzmann factors corresponding 
to simple fermion clusters, as a means for gaining some understanding of the nature 
of the effective couplings that can be mediated in  such clusters. We have in fact 
performed such a calculation rigorously for the elementary cluster, shown in figure 1, 
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consisting of spinless fermions on three sites with on-site and nearest-neighbour 
repulsion [SI. I n  this case we found by the decimation process that the effective coupling 
between the outer sites was attractive for a wide range of temperatures and densities 
and on this basis suggested oxygen-mediated attraction between holes on Cu-sites as 
a possible pairing mechanism for high-T, superconductivity. 

In reality of course, the holes in extended Hubbard models of Cu-0, planes are 
not spinless and in fact it is commonly believed that ‘spin’ also plays an essential role 
in high= T, ,  

Our purpose here is to report on a quantum cluster decimation (QCD) calculation 
for the elementary cluster of fermions with spin on three sites with on-site and 
nearest-neighbour interactions, 

In the spinless case there are two states per site (unoccupied or occupied by a 
particle) so in the number representation we have to manipulate 2’= 8-dimensional 
matrices in !he decima!ien precess. With the inc!usian of spln, howeve:, there are faur 
states per site (unoccupied, occupied by a spin-up or a spin-down particle, and occupied 
by a spin-up and a spin-down particle) so the decimation process now involves 
manipulation of 43 = 64-dimensional matrices. We were, nevertheless, able to perform 
the decimation process exactly in this case and found that the original on-site and 
nearest-neighbour interactions gave rise to complicated temperature and density depen- 
dent three- and four-particle interactions as well as effective spin-dependent pair 
interactions of the superexchange form, and renormalized single and pair hopping 
terms. In other words, all of the effective couplings obtained by the more conventional 
perturbative [9] and canonical transformation [lo] methods can also be obtained by 
our QCD method with the added feature that our effective couplings are dependent on 
the temperature and the density. 

The earlier perturbative methods [9] can be criticized on the grounds that they are 
based on perturbations from the ground state and therefore may only be relevant at 
very low temperatures. Similarly, the canonical transformation method [ 101 is simply 
an exponential unitary transformation on the Hamiltonian in which all but the lowest- 
order terms, are discarded in a somewhat ad hoc fashion. Both the perturbative and 
canonical transformation methods do not involve the temperature in any essential way 
so their relevance to statistical mechanical calculations is not at all clear. 

Our QCD method is strongly based in statistical mechanics and involves the tem- 
perature and density in a n  essential way. The obvious drawback ofthe method, however, 
is that it ignores the non-commutability problem mentioned previously and can only 
be feasibly carried out on small elementary clusters. Nevertheless, we see our calcula- 
tions to date as a first step in a systematic development of an alternative approach in 
quantum statistical mechanics involving a selective summation or ‘tracing-out’ of states 
in the partition function. It is clear, however, that we need to incorporate ideas of 
self-consistency and renormalization into our method before it can become a viable 
and practical tool. Work along these lines is currently in progress. 

I n  outline this paper is arranged as  follows. In section 2, we present the classical 
decimation transformation for a lattice gas cluster of three sites and review some of 
our previous results. In section 3, we derive a 64 x 64 representation of the three-site 
cluster Hamiltonian and the associated Boltzmann factor for iermions with spin and 
perform a partial trace over states of the central site. In section 4, we derive and discuss 
the form of the effective cluster Hamiltonion for the two outer sites of the original 
cluster. Technical details are relegated to appendices and our results are discussed in 
section 5. 
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2. Classical lattice gas decimation 

In order to get some idea of what is involved in the decimation process, we first 
consider the simplest case of classical decimation of a three-site lattice gas cluster with 
Hamiltonian 

Xc,  = J n (  n ,  + n 2 )  (2.1) 

where n = 0, 1 is the occupation number of the central site of the cluster and n,  = 0, 1 
for i = I ,  2 are the occupation numbers of the outer two sites of the cluster. 

The contribution to the grand canonical partition function obtained from the cluster 
by summing over the states of the central site is given by 

1 exp[-PJn(n,+n2)1 e x p ( P w ) =  l + z e x p [ - P J ( n l f n d l  ( 2 . 2 )  
"=".I 

where p is the chemical potential and z = exp(pp) is the activity. 
We now define the effective cluster Hamiltonian Xzr and effective chemical potential 

l + z e x p [ - p ~ ( n , + n , ) ] = C  exp(-pX::)exp[all(n,+n,)] (2.3) 
L by 

and make the ansatz 

e; = in, n 2 .  

Since ni = 0 , l  for i = 1,2  we see that (2.3) with Zy given by (2.4) is satisfied identically 
provided 

C = l + z  (2.5) 

where 
x = exp(-PJ) (2.8) 

The important point to notice from (2.7) is that j < O ,  i.e. the effective coupling is 
always affracfiue regardless of the sign of the original coupling J.  

For the classical lattice gas, where Boltzmann factors for clusters commute, we 
deduce from the above simple decimation calculation that the grand canonical partition 
function for the decorated square lattice gas with N bonds for example (i.e. the classical 
Cu-02  plane shown in figure 2) is in fact equal to (1 + z ) N  times the grand canonical 
partition function for the usual square lattice gas but with effective nearest-neighbour 
(attractive) coupling J and effective chemical potential p+4/i.  

The above results are, of course, well known but are usually expressed in king 
spin language. 

I n  a previous article [XI, we generalized the above cluster Hamiltonian (2.1) to 
include particles with spin so that in place of (2.1) we considered the three-site cluster 
Hamiltonian 

xci= J ( n t + n , ) ( n i t + " 2 r + n , , + n 2 , ) +  Uonrnl (2.9) 

where n, , ,  U =  t,&, denotes the occupation number of the central cluster site by a 
particle with spin U, and n , , ,  v = t ,  & and i = 1,2, denotes the occupation numbers of 
the outer sites of the cluster by particles with spin U. 
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It will be noted that (2.9) is in fact the Hamiltonian for an extended Hubbard 
model of a three-site cluster with zero hopping integral I ,  on-site repulsion U, and 
nearest-neighbour interaction J. Our task in the following sections will be to perform 
the decimation with hopping included in (2.9). 

In the classical case (2.9) decimation proceeds as before by summing the Boltzmann 
factor for the cluster states n, = 0, 1, U = T, of the central site and seeking an effective 
chemical potential L; and cluster Hamiltonian q r  for the outer sites, such that 

L exp(-P%J exp[pw(nt+nl)l 
In,,  -0. I t  

In this case a simple pair interaction ansatz such as (2.4) for zy is inadequate 
and in order for (2.10) to be satisfied identically for all possible states of the outer 
sites we must postulate effective three- and four-particle interactions in addition to an 
effective two particle interaction. We refer the interested reader to our previous article 
[SI for details and merely note here that again the effective pair interaction is always 
attractive regardless of the sign of the original coupling J. The weaker three- and 
four-particle interactions on the other hand show mixtures of attraction and repulsion 
in the temperature-density plane. 

3. The 64x64 representation of the quantum cluster Hamiltonian and the partial trace 
decimation 

We consider the three-site cluster Hamiltonian 

ae,,= --f 1 [a : , (a , ,+a ," )+(a : ,+a: , )a , , l  
,,=?.l 

+ uontn,+ J ( n y +  nl)(ni i+n27+ ~~I+QI)  (3.1) 

where a,,,(a:,) is the usual fermi destruction (creation) operator for a particle with 
spin U on the outer sites i = 1,2, a,,(a:,) the corresponding operators for the central 
site of the cluster and n,,, = aT,,a,,, n,, = a h , ,  the respective number operators for the 
three sites. 

Our problem is to take the partial trace over states {a,,, ab} corresponding to the 
central site such that 

(3.2) 

and to find appropriate expressions for the effective cluster Hamiltonian Z:: and 
effective chemical potential p. 

At this stage it is convenient to introduce the canonical transformation 

(3.3) 
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and to express (3.1) in the form 

Xcl = - t a x  ( a b + , +  a h ) +  Uontn,+ J C  ( n + +  n , ) (n+ ,+  n-*)  (3.4) 
Y " 

where 

(3.5) 
are modified number operators. 

We now adopi the number represenrarion For (3.4j in which aii operators are 
represented by 64 x 64 matrices with row and column indices specified by the set of 
states or 'numbers' { nt , nl, I I + ~ ,  n+1, n-t, n-l}. In this way Zcl can be expressed in the 
following hierarchical block form 

t n, ,  = a*,,a*,, 

(3.6a) 

(3.66) 

with the hl,  4 x 4  matrices ofrhe same form with rows and coiumns arranged in the 
order ( 1 1 )  (10) (01) (00) corresponding to ( n - p q ) .  

We note that the interaction part of Zc,: 

Uonrni+J C (nt+ni)(n+,+ n - - )  (3.70) 
IT 

is diagonal in this representation whereas the kinetic energy part of Zck: 

-(f ix ( a i a + . , + a L a , )  (3 .76)  
R 

is diagonal with respect to the subspace specified by ( ~ ~ n - , )  but non-diagonal with 
respect to the subspace specified by (nrnln+tn+l) .  

Using (3 .70 ) ,  we easily see that the non-zero diagonal blocks of ?ecl are given in 
terms of 

= Do ( 3 . 8 ~ )  

0 U0+4J 

0 
U,+4J 0 = D ,  (3 .86 )  

0 

U,,+6J 0 

0 U,,+2J 

h:','l= 

U,,+6J 0 

U,,+4J 0 
( I l l -  (Ill- 

h22 - h n  - 
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and 

while the remaining diagonal blocks are equal to the 4 x 4  null matrix O,, i.e., 

(3.8g) hE4'=O4 k, I = 1,2 ,3 ,4 .  

The non-diagonal part of E=,, (3.7b), has non-zero matrix elements -tficonnecting 
states and in blocks given by 

(3.8h) 
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It then follows that Xc, can he expressed as a 64 x 64 matrix composed of several 
diagonal 4 x 4 submatrices with the following structure 

' D , O  0 0 0 0 0 0 0 0 0 0 
0 D ,  0 0 T 0 0 0 0 0 0 0 
0 0 D ,  0 0 0 0 0 T 0 0 0 
0 0 O D ,  0 0 T 0 0 T 0 0 
0 T 0 0 D3 0 0 0 0 0 0 0  
0 0 0 0 0 D4 0 0 0 0 0 0  

t000 0 0 O T O  O D 4 0  
0 0 0 0 0 0 0 D, 0 7 - 0 0  
0 0 T O  D, 0 0 0 0 0 0 0 
O O O T  0 D4 0 0 T 0 0 0 

O O D , O O O O O  0 0 0 0  
0 0 0 0  0 0 O D , O  0 T O  

0 0 T O O  T O O  

0 1 6  

01, 

0 1 6  

O O O T O O O O  ! O!r. 0 1 6  

(3.9) 

O O O O O O O T  
0 0 0 0 0 0 0 0  

where 

/-ta 0 O O \  

0 

and 0, denotes the n x n null matrix. 
We are now in a position to construct the matrix 

exp(-p%J exp[Plr(nt+ ni)l  

In  view of the special form of XC, given in (3 .9) ,  we only need to construct the 
following three types of exponential functions of the matrices: 

and 

(3.10) 

(3 .11 )  

(3.12) 
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The 16x 16 reduced matrix 

Z = Tr,.,..,:,t[exp(-p~~,) exp{pw(n,+ q ) J l  (3.14) 
obtained by taking the partial trace over {ac,, a:,) states is now easily obtained from 
(3.13) by adding the 1 6 x  16 diagonal block matrices enclosed in solid lines, multiplied 
by their appropriate, respective, powers of the fugacity 

- - ,or 
‘ - - C  . 

Thus from (3.13) and (3.14). we have 

0 

0 0 

. (3.16) I 0 0 
0 0 

0 z2M1”+2zL1”+1 
+ z{e-OD*+ MI2’)+ LI2l 0 z2K‘l’ 

The problem now is to represent Z in the form (3.2) and to find appropriate 
expressions for the effective Hamiltonian e; and effective chemical potential E. 

4. The effective cluster Hamiltonian 

In the number representation (3.13) of exp(-pXd, the partial trace (3.14) over 
{a-, aL]-states results in the diagonal 16X 16 matrix Z given by (3.16). It is readily 
confirmed, however, that of the sixteen diagonal elements of Z only nine are indepen- 
dent. In order to represent Z in the form (3.2) therefore, we need an effective 
iiamiitonian %$ with seven independeni parameters, which together with C and ,C 
give the required nine unknowns. 

Motivated by our previous classical treatment, we include three-particle and four- 
particle interactions, as well as pair interactions and an effective hopping term, in X::. 
This gives a total of six obvious parameters. The required additional parameters, J : ,  
and J ;  in place of J 3 ,  in (4.1), which distinguish n,,, and n-,, states, are included in 
the expectation that superexchange-type interactions should play an important role 
when quantum effects, arising from fermions with spin, are taken into account. 

X:,“= -ix (R:,R,,,+ R:,R,,) + J2(n, l+  n , l ) ( n , , +  n 2 , ) +  J : n , , n + , + J ; n - , n - ,  

We are thus led to the ansatz 

+jtn,i,&i(,q_ , + , ..-,, n , J +  . I:* .n , f ~. . * ,  n . + ..*,, n , ) +  . -4..+ 1.n  _ n  ,..+ ,..-,..-,. , n .n , (4.1) 

In  view of the fact that 

( a h , , +  R h i < , )  = ntt  + “ti - “q - “-1 (4.2) 

the effective Hamiltonian (4.1) is diagonal in the number representation in which Z 
is diagonal. We are thus led, by direct computation, to the results given in table 1. 



Quantum cluster decimation 4609 

Table 1. The nine independent diagonal elements of Z and corresponding expressions for 

c exp(-B%Y exp[pli(n,, + nii + n , l +  nll)l.  

1111 

1110 

I100 
1011 

1010 
1000 

0011 

0010 

OD00 

Successive elimination of variables starting with C in table 1 gives the explicit 
expressions in table 2 for the parameters in (4.1), in terms of the diagonal components 
of the matrices K,  L and M defined in (3.10)-(3.13), which in turn depend on the 
original parameters in Zc, (2.1). 

Explicit expressions for the diagonal elements of K and L are derived in appendix 
A and listed in table 3. Similar expressions are derived for the diagonal elements of 
M in appendix B for the special case U, = 2J. In the extreme case of infinite on-site 

Table 2. Explicit expressions for the nine parameters in terms of the components of Z 
given in table 1. 
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Table 3. Parameter values determining the diagonal elements of K and L from (A4) 

E I em en 1 -.ID - b l O  

repulsion ( Uo+m), the problem, as shown in appendix C, simplifies and we are again 
able to obtain explicit expressions for the effective coupling parameters. In all other 
cases, however, we must resort to numerical methods. 

Numerical results for the effective coupling parameters J2 and J :  are shown in 
figures 3 and 4 for combinations of U o = 2 J ,  U 0 = q  t / l J I =  1.0 and l / l J / =  10.0 and as 
functions of the variables x = e-@’ and z = e’”. Results for intermediate values of U, 
show similar behaviour. 

We note that J2 is very similar in form to the spinless analogue derived previously 
and that for attractive J ( x >  l ) ,  J2 becomes repulsive for large t / ( J / .  Otherwise J2 is 
predominantly attractive and essentially independent of p for the physically interesting 
region + > O ( z > l )  and J > O ( O < x < l ) .  

The effective exchange couplings J S  are comparable with J : * J ;  for small to 
moderate U,, especially in the region of interest (0 < x < 1 ,  z > 1). For very large U, 
and t / ( J l ,  however, JZ >> J ;  for small x. Similarly, as seen in figure 4, f ( J : +  J ; )  - Jz 
is small for most parameter values except for large U, and t / ( J l  and small x. 

Figure 3. J, as a function of x=eCp’ and i = c u r  for ( 0 )  U,=2J ,  1=1Jl; ( b )  Ucl=2J, 
l = l O ~ J ~ ; ( c )  U,=m, r = l J l ; a n d ( d )  U, , ;m,r= IOlJ l .  
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Figure 3. (continued) 
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Figure 4. (canlinued) 

Perturbation calculations given in appendix D confirm the above results and show 
that quantum hopping and spin effects in our QCD procedure gives rise to the usual 
superexchange interactions. 

Further discussion of the superexchange terms and the relation between our K? 
Hamiltonian and that of the so-called t - J model is given in the following section. 

5. Discussion 

In this paper we have applied our quantum cluster decimation (QCD) method to a 
three-site extended Hubbard model for fermions with spin which includes hopping, 
on-site and nearest-neighbour interactions. 

By taking a partial trace over state of the central site of the cluster, we derived an 
effective cluster Hamiltonian for the two outer sites which includes effective temperature 
and density dependent hopping integral, chemical potential, pair-, three- and four- 
particle interactions. 

Of particular interest are the effective superexchange terms in (4.1): 

J:~+,~+,+J;~-~~-,=~(J:+~~)(N,N,+Q,Q~)+~(J:-J~)(N~Q~+N,Q~) (5.1) 

where in terms of the original number operators n,,, 

N,= n, ,+n, , ,  (5.2) 

and 

Q,=a:,a, , ,+a: , ,a , , , .  (5.3) 

The second term in (5.1) involving products of N,, and Qc, operators can be 
interpreted as a renormalized effective hopping term while the first term in (5.1) can 
be transformed into the familiar superexchange form by defining the usual spin 
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(5.4) 

operators 

S:+iS)’=a’a.  I1 81 

si = g n , ,  - n,,)  

NI NJ + Qt Qi = ( d :  + d: ) (  d, + d J  +inl n2 - 2(S1 . SJ  

s;-is; = a ?  dad i = 1 , 2  

and noting, after some elementary manipulation, that 

(5.5) 
where 

di = aj,ait 

nj = niT+ nil 
i = l , 2 .  (5.6) 

The first term in ( 5 . 5 )  represents a ’pair density’ operator and the remaining terms 
form the familiar combination that appears in the t - J  model [ 111 which has traditionally 
been derived by perturbation or canonical transformation methods. 
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Appendix A. Diagonal elements of the matrices K (3.10) and L (3.11) 

In order to find the elements of the exponential of a symmetric 2 x 2 matrix 

we diagonalize A by the orthogonal matrix S of eigenvectors of A and write 

) s  (A21 0 expA, 
exp(A) = exp(S-’DS) = S-’ exp( D)S = S-’ 

where 

and A , ,  A 2  are the eigenvalues of A. 

exp(A) are given by 
An elementary calculation then shows, in particular, that the diagonal elements of 

sinh(!\/(a-b)’+4cz) I . (A4) ( a  - b )  cosh(-)* 
\/(a - b)’+4c2 
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The diagonal elements of the block matrices K and L defined by (3.10) and (3.11) 
are then easily obtained from (A41 by setting n and b equal to the quantities specified 
in table 3, and c equal to &pt. 

Appendix B. Diagonal elements of the matrix M (3.12) 

i n  order io find ihe diagonal elements of the matrix M- defined by ( j , i i ) ,  we need to 
diagonalize a matrix of the form 

The required results then follow from straightforward generalizations of (A2) and (A4). 
For the special case a =2b, corresponding from (3.12), ( 3 . 8 ~ )  and (3.8e) to Uo=2J, 

the eigenvalues of A are given by 

b , b , a n d d = b * e  (82) 

and the diagonal elements of 

M = exp( -PA)  

are found by the method outlined in appendix A to be 

M " ' = e C B b [ _ + ( i )  2c2 b2+2c2 c o s h p d - T s l n h p d ]  b .  
J 

M'4)= e+ [%+(%) cosh 

In (3.12), the M"' are block matrices with diagonal elements, from ( 3 . 8 ~ )  and 
(3.8e) given by (84) with b = 3 J  for Mi';, b = 2 J  for M:;'=M:;' and b = J  for MY: 
with i respectively 1 ,  2 and 4 in (84 )  and c =  - f i r .  

For U, # 2J, one must resort to numerical methods to evaluate the required matrix 
elements io (3.12). The limit Uo+m, however, affords another special case which can, 
as  shown in appendix C, he treated analytically. 

Appendix C. The strong-coupling limit U,,+ CO 

In the strong-coupling limit (Uo+m), double occupancy of the central site of the 
cluster by particles of either spin is prohibited. This means that in the number 
representation, all of the elements of Xc,  associated with the (11) component of ( n , n , ) ,  
corresponding to the first 16 rows and columns of (3.9), can be discarded, leaving the 
lower 48 X 48 matrix representation for Xcl. 

The matrix K defined in  (3.10) is now irrelevant, L defined in (3.11) remains 
relevant and (3.12) is replaced by the evaluation of the exponential matrix fi defined 
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by 

$ J i l l  [ ( D4 D4 0, i)]-$J=( zx). (Cl)  
exp - P  0, 

f i l l 1  T T 0, MJ, M,, 

Similar reductions occur in (3.13) and (3.16) with the nine independent diagonal 
elements of 2 in table 1 replaced by 

In order to evaluate the diagonal elements of fi, we first note that the eigenvalues 
of the matrix 

are given by 

b, f ( b  *-) = f ( b  f d). (C4) 

Repeating the arguments in appendices A and B then shows that the diagonal 
elements of 

fi = exp( -PA) (C5) 

are given by 

In (C l )  the fi’” are again block diagonal matrices with eleme?ts from (3.8e) given 
by (C6) with b = 35 for $ f y ; ,  b = 25 for My: = My: and b = 5 for My: with i respectively 
1 and 3 and c = -At. 

! 

i 



Quontum cluster decimation 

Appendix D. Perturbation expansions for K ,  L and M for small 1 

Using the well known formula 

exp[-p(%+ %)I 

1 = exp(-/3Z0) [ 1 - 1,' %',(s) d s  + lop 16 %',(s)%',(s') ds' ds  . . . 

the matrix K defined by (3.10) can be written as 

with similar expressions for the remaining diagonal elements. 
Similarly from (3.11) and (3.12), and (Dl),  we have 

from which perturbation expansions for the diagonal elements of L and M easily 
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follow. For example, 
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